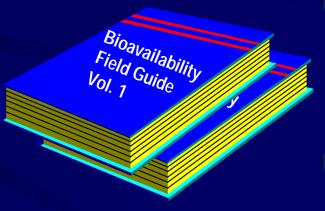


## Bioavailability

Teresa Bernhard, Engineering Field Activity, West Dr. Rosalind Schoof, Exponent Michael Ruby, Exponent


Remediation Innovative Technology Seminar May 1999

## **Objectives of This Presentation**

- Discuss the bioavailability field guide goals, audience, and material
- Present an overview of bioavailability
- Describe how bioavailability can support risk assessments and decisions

## The Bioavailability Field Guide

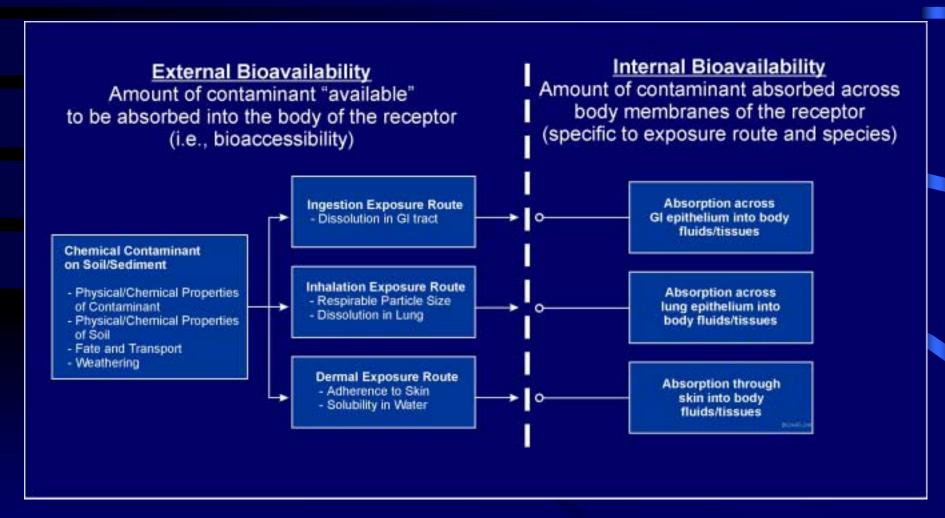
- Three levels of audience
  - Upper Management
  - Remedial Project Manager (RPM)
  - Risk Assessor
- Two volumes
  - The RPM Bioavailability Manual
  - The Risk Assessor Bioavailability Technical Reference



## The Bioavailability Field Guide

- Is available in draft on the NAVFAC intranet
  - www.155.252.204.90
- Please provide comments to:
  - Teresa Bernhard at tsbernhard@efawest.navfac.navy.mil

## **Regulatory Policies: EPA**


"If the medium of exposure at the site...differs from the medium of exposure assumed by the toxicity value...an absorption adjustment may...be appropriate."

Risk Assessment Guidance for Superfund (RAGS), 1989

## Bioavailability is:

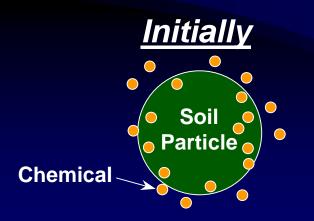
The extent to which a substance can be absorbed by a living organism by active (biological) or passive (physical or chemical) processes. A substance is bioavailable if it is in both a chemical form and a location that allows it to move through an exchange boundary or surface coating (i.e., skin, gut lining, lung lining, cell membrane, or gill epithelium) of an organism and, in so doing, cause a physiological or toxicological response.

# Key Concepts of External and Internal Bioavailability

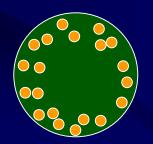


## **Two Important Terms:**

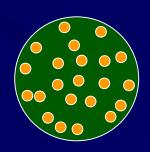
Absolute bioavailability:


Fraction of intake reaching the blood

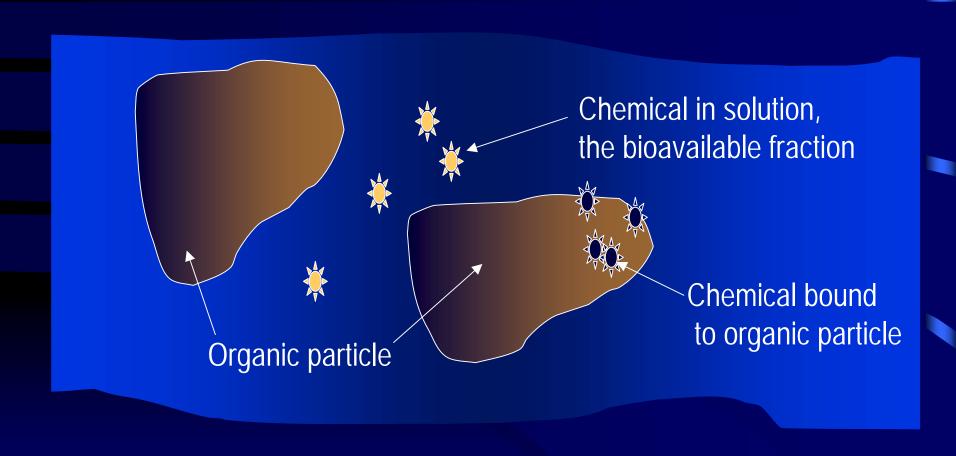
Relative bioavailability:


Difference in absorption between site exposure medium and dosing medium from the toxicity study

## Why are Chemicals Less Bioavailable in Soil?


- Insoluble or poorly soluble materials generally are less well absorbed than soluble materials
- Substances tend to sequester to soil matrices over time. These sequestered substances are less soluble and less bioavailable




#### Days Later



#### **Years Later**

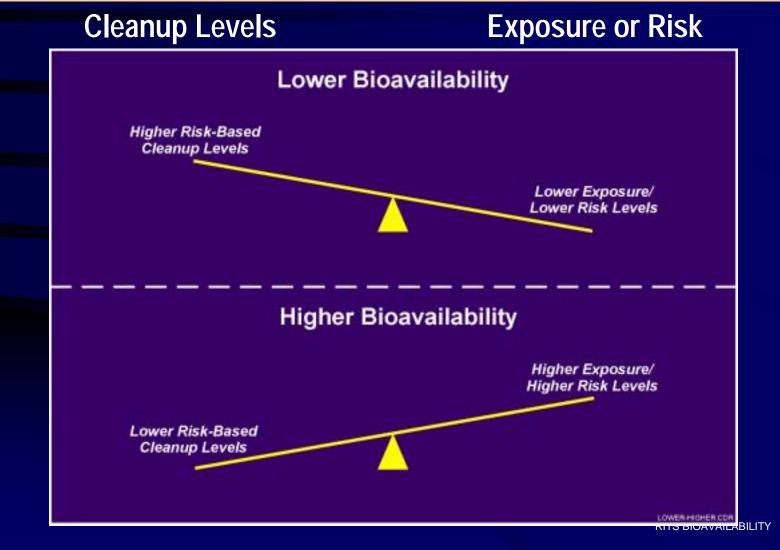


# Chemical Physically Bound to a Substance = Less Soluble



# How Can Bioavailability be Used in Risk Assessments?

### Toxicity x Exposure = Risk


Bioavailability data can be used to adjust the exposure calculations to more accurately reflect the relative absorption factor

## What Are the Benefits of Considering Bioavailability in Studies?

A relative absorption factor of 1 is an unstated assumption in most risk assessments. Bioavailability studies:

- May increase certainty regarding remedial and risk decisions
- Assist in the evaluation of remedial alternatives
- Potentially reduce conservativeness inherent in risk assessments, thereby changing cleanup goals and reducing cost

### The Benefits of Considering Bioavailability



## When Do We Consider Bioavailability?

- When an evaluation of site data or history implies that the bioavailability of chemicals at a site may affect the resulting site-specific exposures
- When costs of site remediation are high and certainty is low
- When the feasibility of a remedy is unclear
- When the risk of the remedy may outweigh the risk from the site for the chemicals
- When long-term management of the site is costly and is based on the risk assessment

Step 8: F

#### Navy Ecological Risk Assessment (ERA) Tiered Approach

Tier 1. Screening Risk Assessment (SRA): Identify pathways and compare exposure point concentrations to benchmarks.

Step 1: Site Visit; Pathway Identification/Problem Formulation; Toxicity Evaluation

Step 2: Exposure Estimate; Risk Calculation (SMDP) 1

**Proceed to Exit Criteria for SRA** 

Exit Criteria for the Screening Risk Assessment: Decision for exiting or continuing the ERA.

Tier 2. Baseline Ecological Risk Assessment (BERA): Detailed assessment of exposure and hazard to "assessment endpoints" (ecological qualities to be protected). Develop site-specific values that are protective of the environment.

- Step 3a: Refinement of Conservative Exposure Assumptions<sup>2</sup> (SRA)---- Proceed to Exit Criteria for Step 3a
- Step 3b: Problem Formulation Toxicity Evaluation; Assessment Endpoints; Conceptual Model; Risk Hypothesis (SMDP)
- Step 4: Study Design/DQO Lines of Evidence; Measurement Endpoints; Work Plan and Sampling & Analysis Plan (SMDP)
- Step 5: Verification of Field Sampling Design (SMDP)
- Step 6: Site Investigation and Data Analysis (SMDP)
- Step 7: Risk Characterization

Proceed to Exit Criteria for BERA

#### Use Bioavailability Here

#### Exit Criteria Step 3a Refinement

- 1) If re-evaluation of the conservative exposure assumptions (SRA) support an acceptable risk determination, then the site exits the ERA process.
- 2) If re-evaluation of the conservative exposure assumptions (SRA) do not support an acceptable risk determination, then the site continues in the BERA process. Proceed to Step 3b.

#### Exit Criteria BERA

- 1) If the site poses acceptable risk then no further evaluation and no remediation from an ecological perspective is warranted.
- 2) If the site poses unacceptable ecological risk and additional evaluation in the form of remedy development and evaluation is appropriate, proceed to third tier.

#### Tier 3. Evaluation of Remedial Alternative (RAGS C)

- a. Develop site-specific, risk-based cleanup values.
- b. Qualitatively evaluate risk posed to the environment by implementation of each alternative (short-term) impact and estimate risk reduction provided by each (long-term) impact; provide quantitative evaluation where appropriate. Weigh alternative using the remaining CERCLA 9 Evaluation Criteria. Plan for monitoring and site closeout.

Notes: 1) See EPA's 8-Step ERA Process for requirements for each Scientific Management Decision Point (SMDP).

- 2) Refinement includes but is not limited to background, bioavailability, and detection frequency.
- 3) Risk Management is incorporated throughout the tiered approach.

## When Should We "Pass" on the Bioavailability Question?

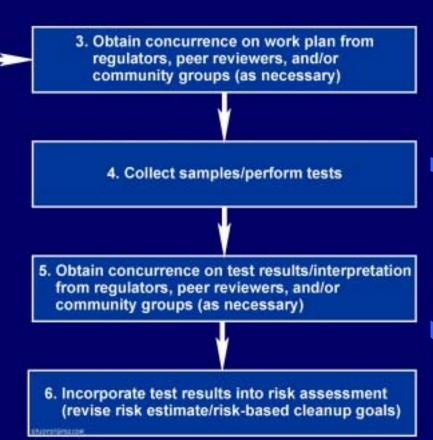
- When dose response data from studies for the chemical of concern in the matrix of concern already exist
- When the risk assessment, uncertainty analysis, or sensitivity analysis implies that bioavailability is not a driving force in the risk
- When the cost of site remediation is minimal relative to the cost of a bioavailability study
- When existing chemical or toxicological literature and data may qualitatively support alternative decisions
- When there are more than 3 COPCs

# What Should an RPM Know About Bioavailability Studies?

- Plan ahead. In the risk assessment workplan, plan for and suggest bioavailability adjustments.
- Design bioavailability studies and plan the use of the study data in conjunction with regulators.
- Get agreement up front on how the data is to be taken and used.
- Cite data and decisions from other sites.

# What Should an RPM Know About Bioavailability Studies? (cont.)

- Get outside sources (such as peer review) to review the study design and the final risk assessment.
- Ensure adequate technical support from toxicologists, experts in bioavailability and study design, and risk assessors.
- Plan for the cost up front.
- Plan for time.


## Steps for a Bioavailability Study



- Potential for regulatory acceptance
- Site data indicate potential for lower site-specific bioavailability?
- Number of chemicals driving risk assessment
- · Exposure media, etc.
- Cost and schedule considerations

#### 2. Develop work plan for study

- · Determine the bioavailability questions to be answered
- Determine how test results will be used/interpreted
- Determine what type of test is appropriate (i.e., in vitro, in vivo)
- Develop test protocols
- Identify testing laboratory



## The Bioavailability Field Guide Goal

■ To supply Navy management, project managers, and risk assessors with information about the utilization of bioavailability in risk assessment and risk management and also about how bioavailability might be used in site assessments

## The Bioavailability Field Guide

- Has decision flowcharts to guide participants through the important steps of bioavailability and the utilization of bioavailability in risk assessments
- Has extensive support literature to assist risk assessors in determining the usefulness of

bioavailability in risk assessments

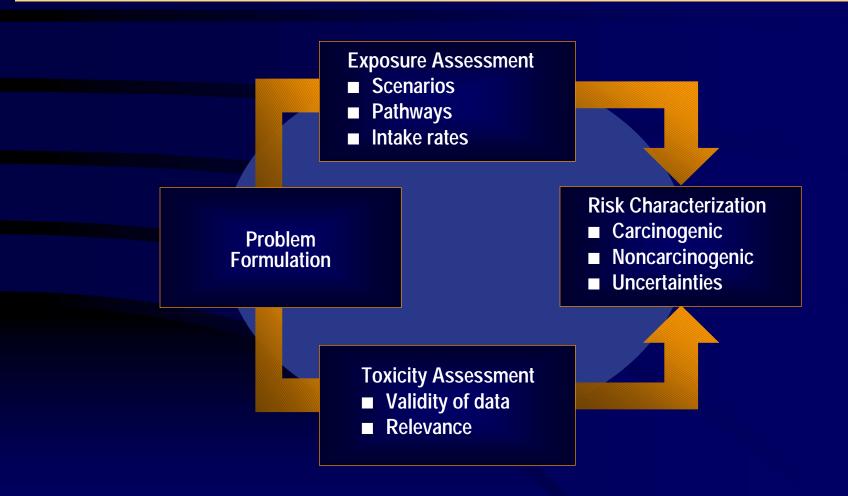
## Why Consider Bioavailability in Risk Assessment?

- Is bioavailability currently considered?
- What are the advantages of collecting site-specific data?
- How are such studies planned and conducted?
- How are results used?
- What resources are available?

### **Outline**

- Definitions and review of risk assessment procedures
- Regulatory policies and precedents
- Geochemical considerations
- Methods review
- Case studies
- Ecological risk assessment applications
- Conclusions: Role of RPM, resources, Navy policy recommendations

### **Outline**


- Definitions and review of risk assessment procedures
- Regulatory policies and precedents
- Geochemical considerations
- Methods review
- Case studies
- Ecological risk assessment applications
- Conclusions: Role of RPM, resources, Navy policy recommendations

Definitions and review of risk assessment procedures

## **Absolute Bioavailability**

Fraction of intake reaching the central compartment; i.e., blood

## Why is Bioavailability Relevant to Risk Assessment?



## Consideration of Bioavailability in Risk Assessment

**Toxicity** 

X

**Exposure** 

= Risk

- Different Species
- ■Sensitive Receptors

- Different Routes
- Different Media
- Variation within Medium

## Basis for Oral Toxicity Values for Selected Metals

| Chemical                              | cal Toxicit |                   | city Value                                                   | Toxicity Endpoint                                                   | Species, Study Type                              | Exposure Medium/<br>Chemical Form                |  |
|---------------------------------------|-------------|-------------------|--------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--|
| Arsenic                               |             |                   |                                                              |                                                                     |                                                  |                                                  |  |
| Inorganic                             | RfD         | )                 | 3x10 <sup>-4</sup> mg/kg-day                                 | Hyperpigmentation,<br>keratosis, possible<br>vascular complications | Human, chronic oral                              | Drinking water, food/<br>dissolved arsenic       |  |
|                                       | CS          | F                 | 1.5 (mg/kg-day) <sup>-1</sup>                                | Skin cancer                                                         | Human, chronic oral                              | Drinking water/<br>dissolved arsenic             |  |
| Cadmium                               | RfD         | )-water<br>)-food | 5x10 <sup>-4</sup> mg/kg/day<br>1x10 <sup>-3</sup> mg/kg-day | Significant proteinuria                                             | Human, number of chronic studies                 | Water, food                                      |  |
| Chromium<br>Chromium(<br>insoluble sa | (III) RfC   | )                 | 1.5 mg/kg-day                                                | NOAEL                                                               | Rat, chronic feeding study                       | Diet/Cr <sub>2</sub> O <sub>3</sub>              |  |
| Chromium(                             | (VI) RfC    |                   | 3x10 <sup>-3</sup> mg/kg-day                                 | NOAEL                                                               | Rat, 1-year drinking study                       | Water/K <sub>2</sub> CrO <sub>4</sub>            |  |
| Mercury<br>Mercuric<br>chloride       | RfD         | )                 | 3x10 <sup>-4</sup> mg/kg-day                                 | Autoimmune effects                                                  | Rat, subchronic feeding and subcutaneous studies | Gavage, subcutaneous injection/mercuric chloride |  |
| <b>Nickel</b><br>Soluble sal          | lts RIC     | )                 | 2x10 <sup>-2</sup> mg/kg-day                                 | Decreased body and organ weights                                    | Rat, chronic oral                                | Diet/nickel sulfate                              |  |

## **Relative Bioavailability**

RAF =  $\frac{\text{Absorption for exposure medium of concern}}{\text{Absorption for medium used in toxicity study}}$ 

RAF = Relative absorption factor

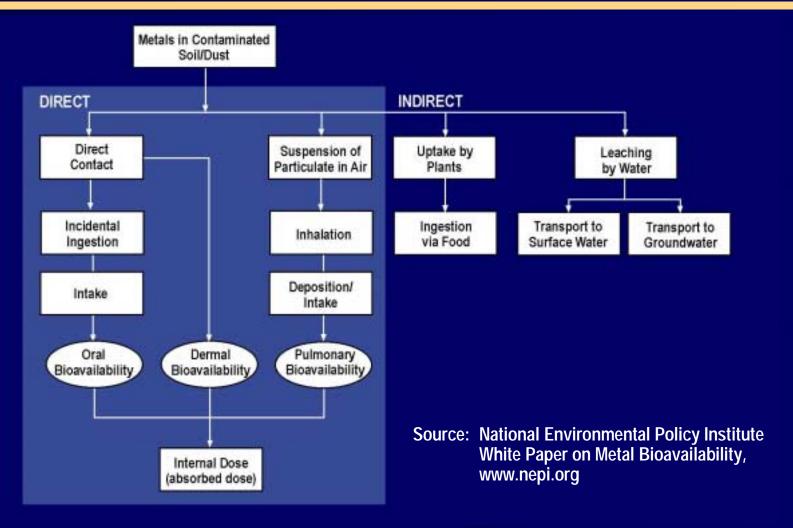
## **Exposure Assessment**

## Chemical Concentrations

 Modeled vs. measured data

#### Other Site-Specific Factors

- Bioavailability
- Time-activity patterns


CR = contact rate

EF = exposure frequency

ED = exposure duration

FI = fractional intake BW = body weight AT = averaging time

## **Exposure Pathways for Metals in Soil/Dust: Direct Contact vs. Indirect Pathways**



## **Identify Sources of Uncertainty**

### **Exposure Scenario**

#### **Exposure Pathways**

- Inhalation of particulates and vapors
- Ingestion of soil
- Ingestion of homegrown produce
- Dermal absorption

#### **Exposure Parameters**

- Soil ingestion/contact rate
- Exposure frequency
- Exposure duration
- Bioavailability
- Body weight
- Relationship between soil and dust concentrations

### **Outline**

- Definitions and review of risk assessment procedures
- Regulatory policies and precedents
- Geochemical considerations
- Methods review
- Case studies
- Ecological risk assessment applications
- Conclusions: Role of RPM, resources, Navy policy recommendations

Regulatory policies and precedents

## **U.S.** Regulatory Frameworks

- CERCLA
- RCRA
- State hazardous waste site laws
- State voluntary cleanup laws
- Brownfield laws

## Regulatory Policies: EPA

"If the medium of exposure [at] the site...differs from the medium of exposure assumed by the toxicity value...an absorption adjustment may...be appropriate."

Risk Assessment Guidance for Superfund (RAGS), 1989

### **EPA Recommends an RAF:**

"[to] adjust a food or soil ingestion exposure estimate to match a RfD – or slope factor based on...drinking water..."

Risk Assessment Guidance for Superfund (RAGS), 1989

### **EPA Lead Exposure Models**

- Default assumptions for absolute bioavailability, water and food = 50%; soil = 30%
- So, default soil lead RAF = 0.6 (i.e., 30% divided by 50%)
- Site-specific data acceptable

U.S. EPA, 1994, 1996

#### **State Policies**

# State Michigan Default = 0.5 (inorganics and nonvolatiles) Default for arsenic = 0.4, site-specific data considered Massachusetts Selected defaults <1, site-specific data considered (in vitro cyanide studies)</li> New Jersey Site-specific data considered (animal studies) Site-specific data considered Site-specific data considered Same defaults <1, site-specific data considered</li>

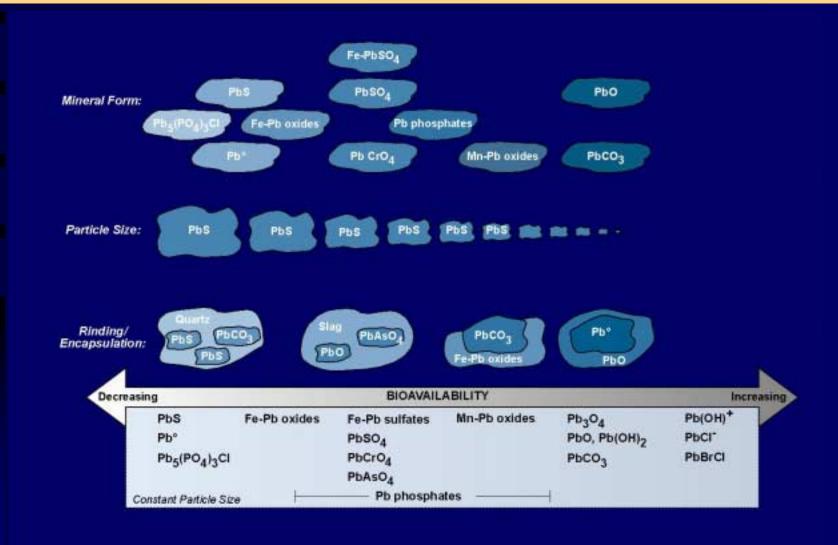
# Precedents for Metals: EPA-Administered Sites

| Region | Site               | Metal/RAF/Basis                 |
|--------|--------------------|---------------------------------|
| VIII   | Butte, MT          | Pb/0.24/animal                  |
| VIII   | Anaconda, MT       | As/0.18/animal                  |
| VIII   | Salt Lake City, UT | Pb/0.38-0.60/animal             |
| III    | Palmerton, PA      | As/0.44/animal                  |
| IV     | Oak Ridge, TN      | Hg/0.10/speciation and in vitro |
| IX     | Carson River, NV   | Hg/0.3/speciation               |
| X      | Tacoma, WA         | As/0.8/animal                   |

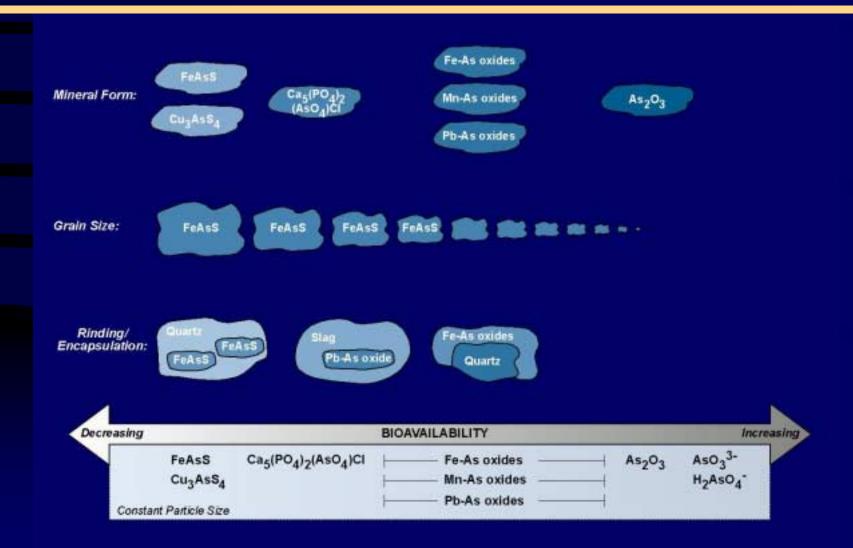
# Precedents for Metals: State/Provincial Sites

| State            | Site                   | Metal/RAF/Basis                                     |
|------------------|------------------------|-----------------------------------------------------|
| Oklahoma         | Bartlesville           | Pb/0.4/animal<br>Cd/0.33/animal<br>As/0.25/in vitro |
| Michigan         | Lansing (park)         | As/0.10/speciation and in vitro                     |
| California       | Los Gatos (park)       | Hg/0.3/speciation and in vitro                      |
| British Columbia | Wells                  | As/0.3/in vitro                                     |
| California       | Sacramento (rail yard) | As/0/animal                                         |
| Illinois         | Chicago (steel mill)   | Pb/0.48/in vitro<br>Mn/0.23/in vitro                |

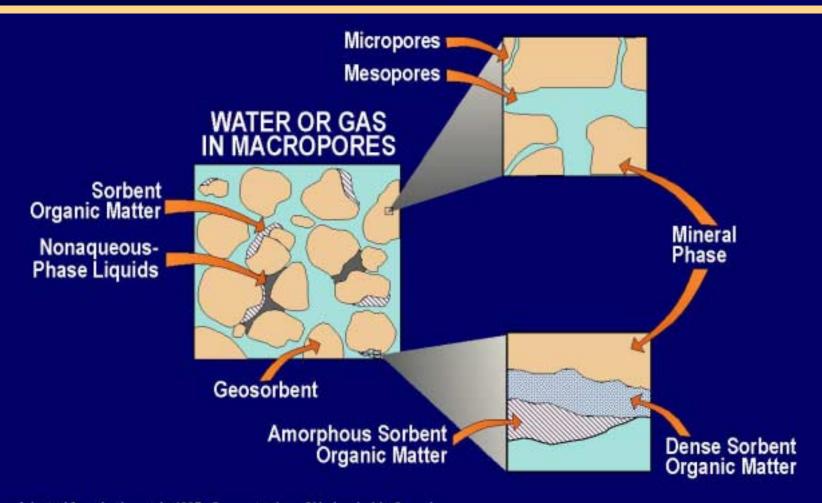
#### **Outline**


- Definitions and review of risk assessment procedures
- Regulatory policies and precedents
- Geochemical considerations
- Methods review
- Case studies
- Ecological risk assessment applications
- Conclusions: Role of RPM, resources, Navy policy recommendations

Geochemical considerations


# Why Are Chemicals in Soil Less Bioavailable?

Insoluble or poorly soluble materials are generally less well absorbed than soluble materials.


# Influence of Lead Species, Particle Size, and Morphology on Lead Bioavailability



# Influence of Arsenic Species, Particle Size, and Morphology on Arsenic Bioavailability



# Sequestration Mechanisms for Hydrophobic Organic Compounds in Soil

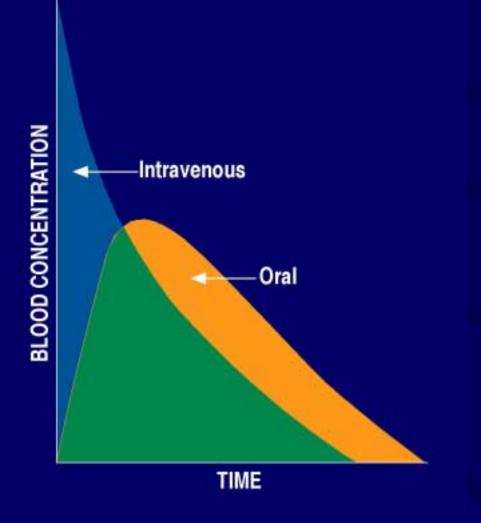


Adapted from Luthy et al., 1997. Sequestration of Hydrophobic Organic Contaminants by Geosorbents. Environ. Sci. Technol. 31(12):3341–3357.

#### **Outline**

- Definitions and review of risk assessment procedures
- Regulatory policies and precedents
- Geochemical considerations
- Methods review
- Case studies
- Ecological risk assessment applications
- Conclusions: Role of RPM, resources, Navy policy recommendations




# What Kind of Bioavailability Data Are Needed to Support an RAF?

- Literature data
- Site-specific data
  - Mineralogy/speciation
  - In vitro test systems
  - Laboratory animal studies

## In Vivo Methods of Measuring Bioavailability

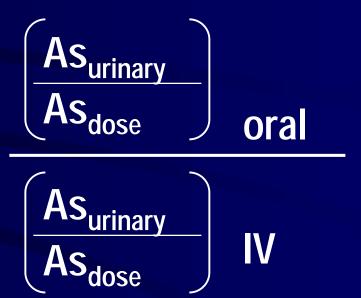
- Blood concentration over time (area under the curve, or AUC)
- Absorbed fraction in urine and/or tissues
- Comparison of tissue concentrations
- Unabsorbed fraction in feces

# Comparison of AUCs for Blood Concentrations



#### **Limitation:**

Most accurate when chemical is rapidly excreted.


#### **Unabsorbed Fraction in Feces**

#### Confounding factors:

- Biliary excretion, absorption will be underestimated (test by measuring fecal excretion after intravenous dose).
- Retention in intestinal mucosa, absorption will be overestimated.

### **Comparison of Urinary Excretion**





#### **Limitation:**

Chemical must be excreted primarily in urine.

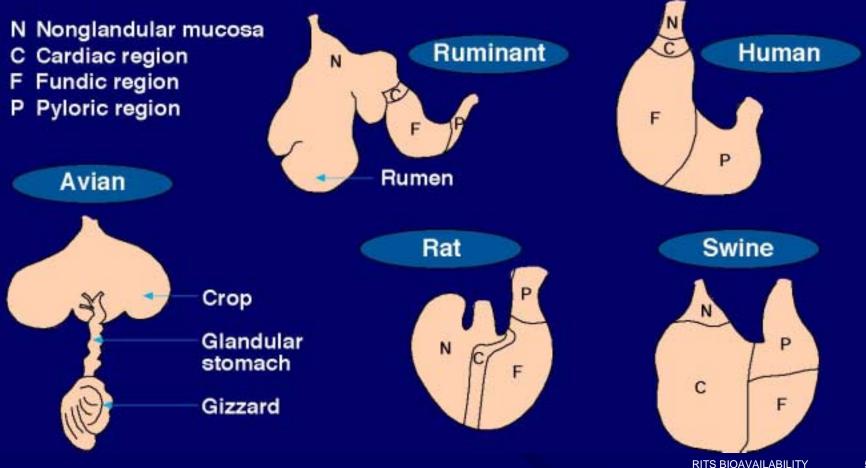
### **Comparison of Tissue Concentrations**

Relative absorption factor (RAF) =

[Lead concentration in bone] oral soil lead

[Lead concentration in bone] oral soluble lead

**Limitation:** 


RAF only, not absolute bioavailability.

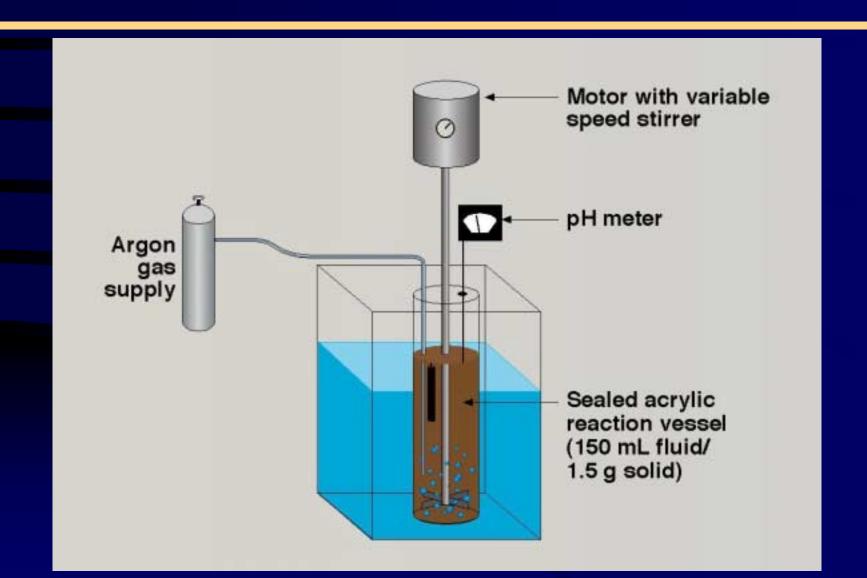
### Design Considerations for In Vivo Studies in Animals

#### **Select Animal Model**

- Chemical behavior in animal vs. humans
- Age
- Sex
- Nutritional status and diet
- Cost and availability of animals

## **Variations in Gastric Anatomy**

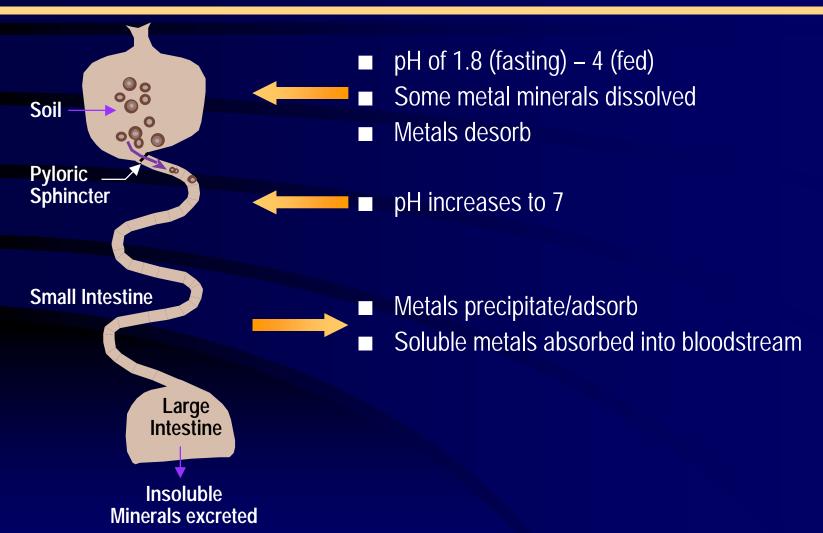



# Design Considerations for In Vivo Studies in Animals (continued)

#### **Specify Study Design (protocol)**

- Animal model
- Test substance (e.g., soil particle size range)
- Dose levels
- Positive controls (e.g., intravenous and oral administration of compound in solution)
- Single dose vs. repeated dose
- Number of animals per group
- Animals fasted or fed
- Samples to collect (e.g. urine, feces, blood, tissues)
- Sample collection frequency and length

Follow Good Laboratory Practices (GLPs) 40 CFR 792


## **In Vitro Test System**

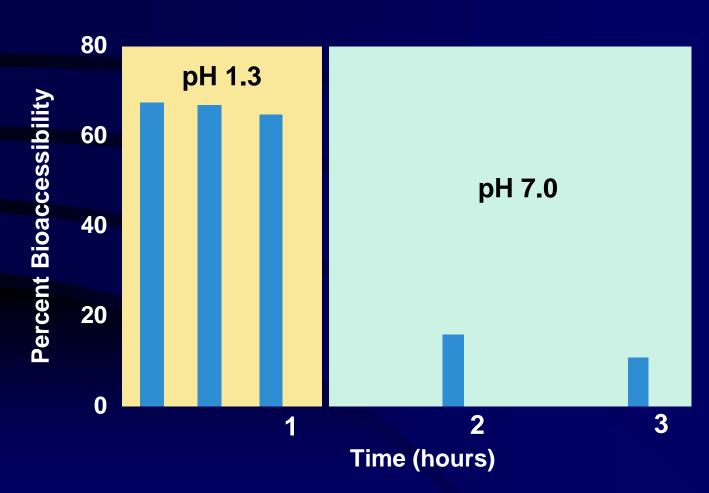


### Basis for Design of In Vitro Test System

- Form and solubility of metal will control bioavailability
- Uses design of test for Fe
- Uses human pediatric GI parameters
- Mimics fasting conditions

### **Gastro-Geochemistry of Metals**




#### In Vitro Extraction: Stomach Phase

- Stomach solution pH 1.5 HCl, organic acids
- Add 1.5 g soil (<250-micron size fraction) to 150 mL stomach fluid in reaction vessel
- 1 hour stirred incubation
- Collect 5-mL samples at 30 and 60 minutes and filter (0.45 micron) for metals analysis

### In Vitro Extraction: Intestinal Phase

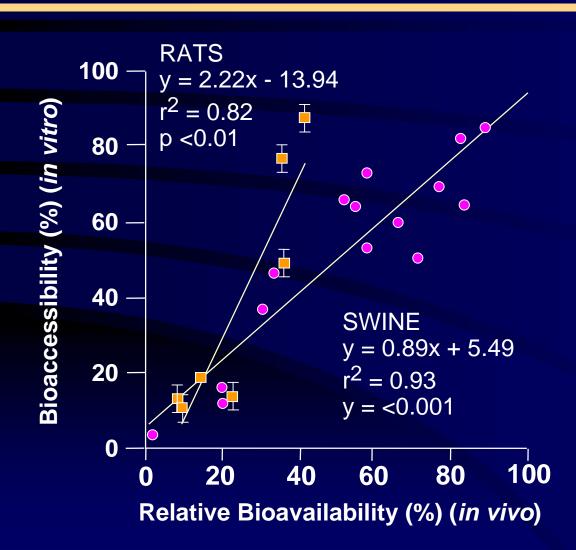
- Titrate to pH 7.0 with NaHCO<sub>3</sub>
- Add bile salts and pancreatin
- Collect samples at 1 and 3 hours after pH 7 is attained, and filter (0.45 micron) for metals analysis

# Bioaccessibility of Lead (pH 1.3) Bartlesville Soil



### Critical Design Factors for In Vitro Method

- **Chemistry:** pH = 1.5 or 2.5, fluid composition-buffers
- **Temperature**: 37°C water bath
- Transit times: incubation for 1 hour
- Particle size: selected < 250 microns</p>
- Mixing rate: high rate of agitation


### In Vitro Test Design Goals

- Accurately mimic key processes/chemistry
- Soluble vs. particulate uptake (0.45-micron filter)
- Predictive of nonequilibrium system
- Simple and reproducible
- Validation against in vivo studies

### Validation of In Vitro Test System

- Mechanistic
- Correlational
- Combined mechanistic/correlational

#### In Vitro to In Vivo Correlation for Lead in Soil



Indicates upper and lower 95% confidence interval on *in vitro* measurements (n=6)

### **In Vitro Test Applications**

- Estimate site-specific RAF
- Screen site materials
- Evaluate different substrates
- Evaluate amendment effects
- Investigate GI tract parameters

#### **Outline**

- Definitions and review of risk assessment procedures
- Regulatory policies and precedents
- Geochemical considerations
- Methods review
- Case studies
- Ecological risk assessment applications
- Conclusions: Role of RPM, resources, Navy policy recommendations



### **Case Studies**

Anaconda, MT Arsenic

■ Bartlesville, OK

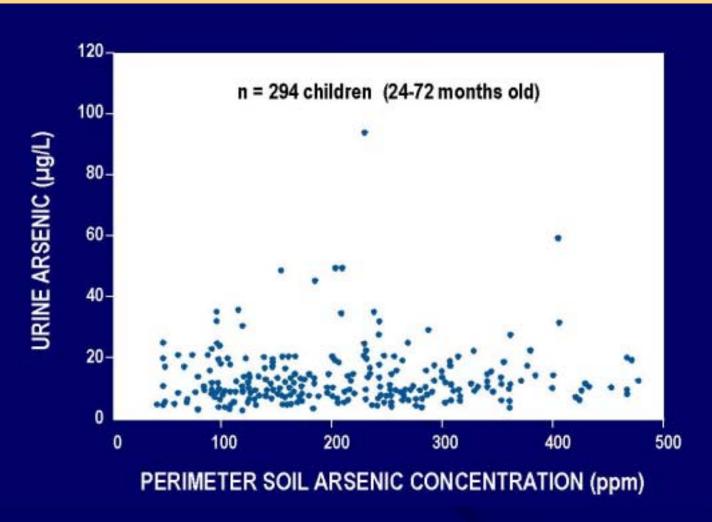
Cadmium Lead Arsenic

# Case Study: Anaconda, MT Former Copper Smelter

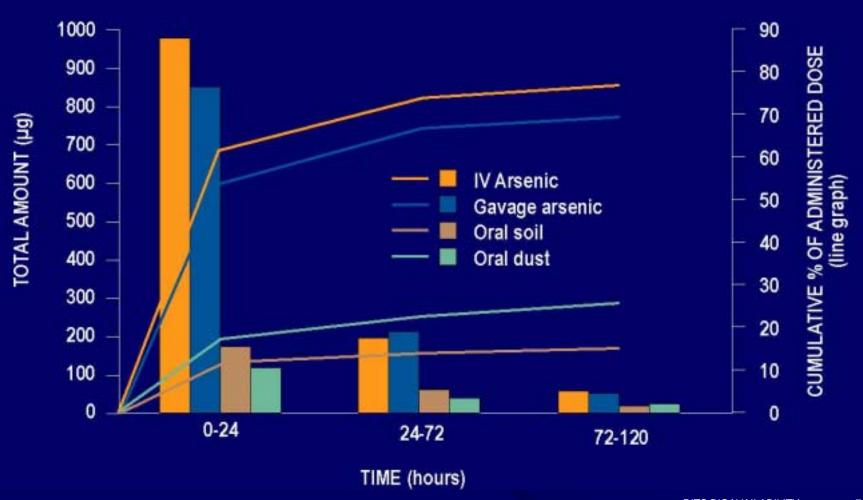



#### **Anaconda: Site Characteristics**

- 100 years of copper smelting
- ARCO bought Anaconda Minerals Company in the early 1970s
- HHRA focused on arsenic in soil
- Tens of square miles affected
- Average soil arsenic in town = 180 ppm


# Anaconda: Critical Factors Supporting Soil Arsenic Cleanup Levels

- Target risks close to 1x10-4
- Comprehensive exposure study
- Bioavailability study
- Indoor dust data
- Monte Carlo analysis


# Relationship of Urine Arsenic to Arsenic Exposures



## **Anaconda Arsenic Exposure Study**



# Monkey Bioavailability Study: Arsenic Excretion in Urine



### Anaconda: HHRA

- Arsenic RAF assumed to be 0.18 for soil, 0.25 for indoor dust
- Indoor dust concentration = 0.7 soil concentration
- 1x10<sup>-4</sup> risk level; 300 ppm (vs. default of 40 ppm)

## Anaconda: Arsenic Soil Cleanup Levels (ppm)

Residential (ROD 9/96): 250

Occupational (ROD 3/94): 500

■ Recreational (ROD 3/94): 1,000

### **Anaconda: Reasons for Success**

- Magnitude of site required site-specific solution
- EPA and ARCO RPMs worked closely
- EPA and ARCO toxicologists shared study plans and data
- Comprehensive exposure study supported bioavailability study

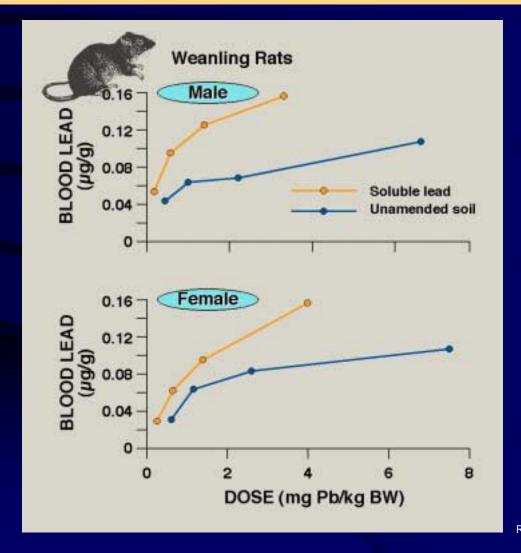
# Case Study: Bartlesville Zinc Smelter



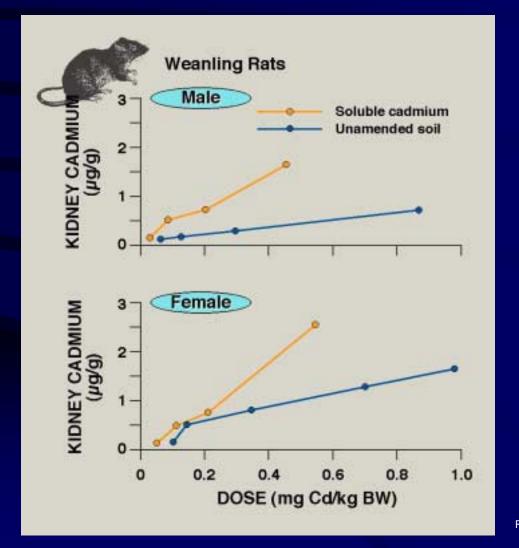
### **Bartlesville: Site Characteristics**

- Former zinc smelter site
- PRP group: Cyprus Amax, Salomon, City
- Site investigation transferred from EPA to State (ODEQ)
- Superfund accelerated mode
  - Completed in 6 months
- Bioavailability study protocols included in work plan

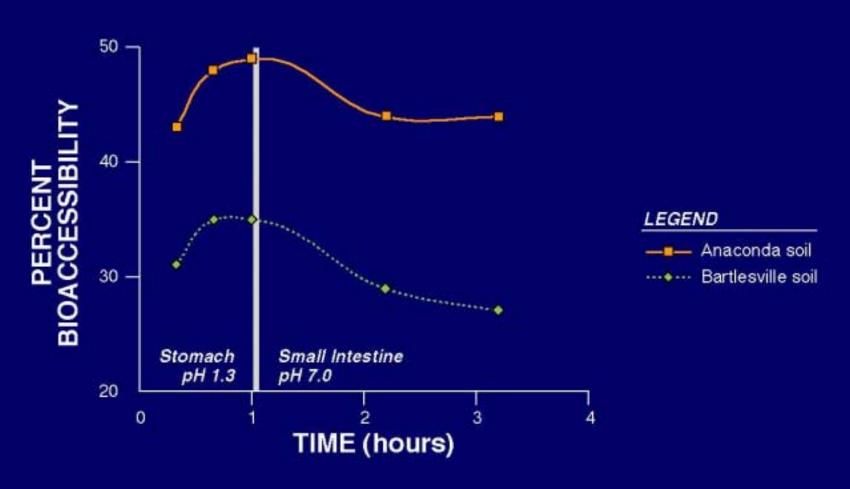
### **Chemicals of Potential Concern**


Lead

- Childhood exposures (neurotoxicity)
- Adult exposures (protection of fetus)
- Cadmium Lifetime exposures (kidney toxicity)
- Arsenic Lifetime exposures (cancer)


## Bartlesville: Critical Studies to Support Risk-Based Remediation Goals

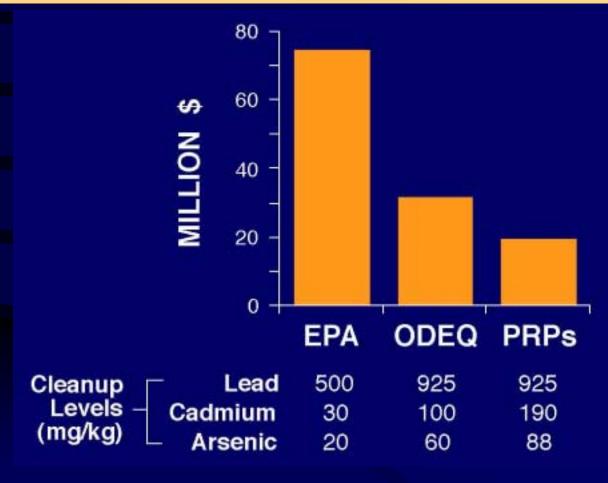
- Speciation analyses for lead, cadmium, and arsenic
- Bioavailability study of lead and cadmium in rats
- In vitro bioaccessibility study of arsenic


## Bartlesville: Bioavailability of Lead in Soil



# Bartlesville: Bioavailability of Cadmium in Soil




## **Arsenic Bioaccessibility**



# Bartlesville: Relative Bioavailability Impacts on Cleanup Levels

|         | Default | Relative<br>Bioavailability | Approximate Change in Cleanup Levels |
|---------|---------|-----------------------------|--------------------------------------|
| Lead    | 0.60    | 0.40                        | 2x                                   |
| Cadmium | 1.0     | 0.33                        | 3x                                   |
| Arsenic | 1.0     | 0.25                        | 4x                                   |

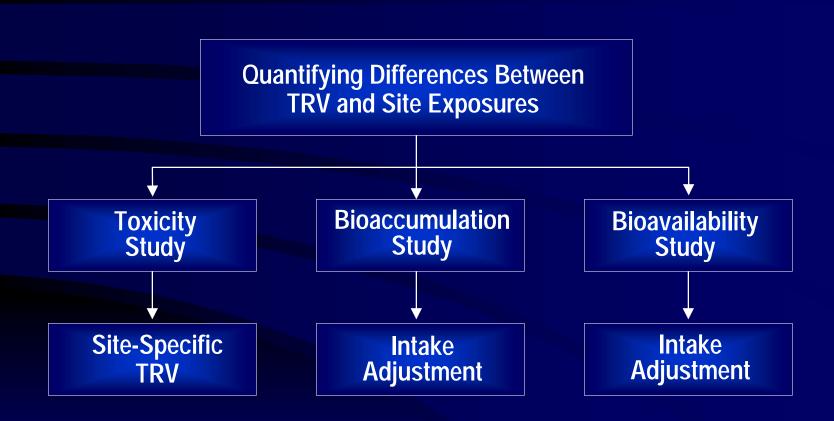
## Bartlesville: Residential Cleanup Levels<sup>a</sup> vs. Remediation Cost<sup>b</sup>



<sup>&</sup>lt;sup>a</sup> EPA PRGs, PRP values in RI report, ODEQ values in ROD 12/94

b Removal and off-site disposal

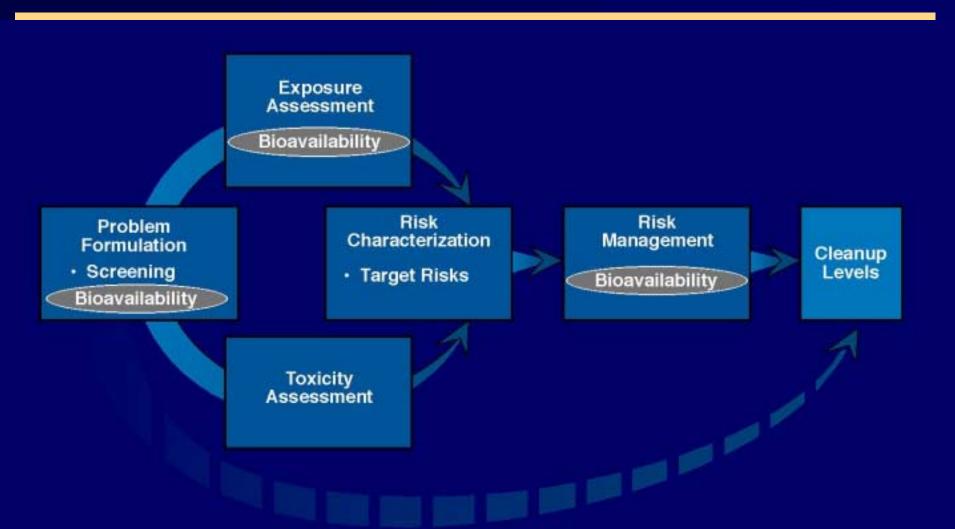
### **Bartlesville: Reasons for Success**


- Bioavailability studies proposed in work plan
- All critical stakeholders had toxicologists participating
- Stakeholders reviewed study protocols
- Stakeholders participated in data interpretation
- Protocols and results were peer reviewed
- Consistent results were obtained in supporting studies

### **Outline**

- Definitions and review of risk assessment procedures
- Regulatory policies and precedents
- Geochemical considerations
- Methods review
- Case studies
- Ecological risk assessment applications
- Conclusions: Role of RPM, resources, Navy policy recommendations

Ecological risk assessment applications


## Bioavailability in ERA: Terrestrial Animals



# What Does It Take to Get a Bioavailability Adjustment Accepted?

- Talk with stakeholders (identify need for more accurate risk assessment)
- Plan for adequate time and budgets
- Ensure adequate technical support
- Have study design critiqued
- Share data
- Obtain peer review
- Publish results

## **Applying Bioavailability Adjustments**



### **Outline**

- Definitions and review of risk assessment procedures
- Regulatory policies and precedents
- Geochemical considerations
- Methods review
- Case studies
- Ecological risk assessment applications
- Conclusions: Role of RPM, resources, Navy policy recommendations



## Policy Issues for the Navy to Consider

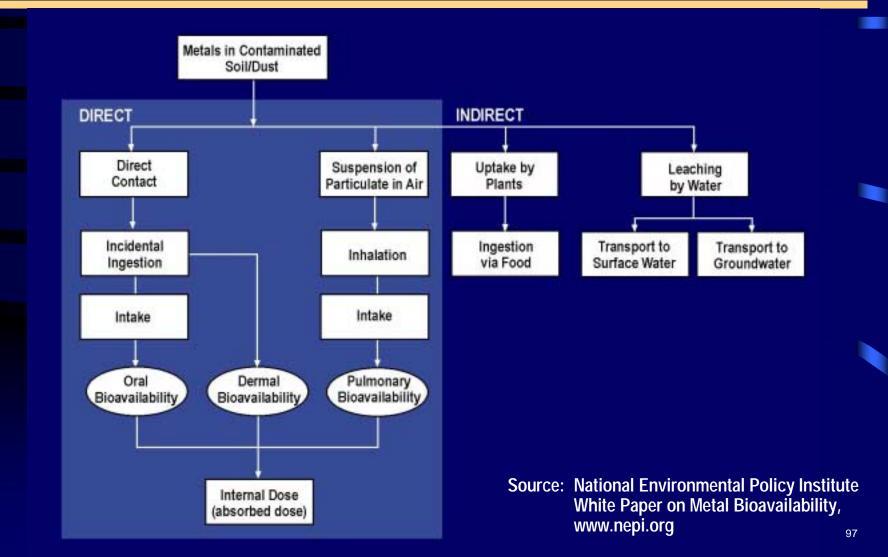
- Standard policy to identify the default assumption that RAF = 1.0
- Standard policy to address bioavailability in uncertainty analysis
- Management support for studies if cost-benefit evaluation is positive

#### References

- National Environmental Policy Institute. 1998. Bioavailability: Implications for Science/CleanupPolicy. Bioavailability Policy Project. White Paper.
- Battelle and Exponent. 1999. Draft Final Guide for Incorporating Bioavailability Adjustments into Human Health and Ecological Assessments at U.S. Navy and Marine Corps Facilities. Part 1: Overview of Metals Bioavailability. Prepared for NFESC, Port Hueneme, CA.
- U.S. Environmental Protection Agency. 1989. *Risk Assessment Guidance for Superfund, Volume 1: Human Health Evaluation Manual (Part A, Baseline Risk Assessment)*. EPA/540/1-89/002. Office of Emergency and Remedial Response, Washington, DC.

### **Point of Contact**

- Ruth Owens
  - Phone: (805) 982-4798, DSN 551-4798
  - Fax: (805) 982-4303, DSN 551-4303
  - E-mail: rowens@nfesc.navy.mil


Or

Your Local TSR

# Why Were Bioavailability Adjustments Accepted at These Sites?

- Perceived need for more accurate risk assessments
- Involvement of qualified toxicologists for all critical stakeholders
- Stakeholder participation in study design (i.e., protocol development)
- Stakeholder participation in data interpretation
- Peer review of protocols and results
- Consistent results in supporting studies

## **Exposure Pathways for Metals in Soil/Dust: Direct Contact vs. Indirect Pathways**

